
 1

 
 EUROPEAN COMMISSION 

 
RESEARCH DG 
 
 

MARIE CURIE MOBILITY ACTIONS 

REINTEGRATION ACTIONS 
PERIODIC SCIENTIFIC/MANAGEMENT REPORT 

 

 
 
 

Project no.   517581 
Project acronym   XFLOOD 

Project full name 
Advancing Quantitative Precipitation Estimation and Short-to-Medium Range 

Forecasting on the Basis of Remotely Sensed Data Assimilation 
 
 
 

International Reintegration Grants (IRG) 
 
 
 
 

Deliverable No 2 
Methodology for retrieving precipitation from satellite observations 

by 

Emmanouil Anagnostou and Anastasios Papadopoulos 

 

Period Number : 1 Due date of deliverable: 15/04/2006 

Period covered: from 15/04/2005 to 14/04/2006 Date of preparation: 15/05/2006 

 Date of submission: 25/05/2006 

Start date of project: 15/04/2005 Duration: 24 months 

Project coordinator name: Dr. Evangelos Papathanassiou 
Project coordinator organisation name: Hellenic Centre for Marine Research  

Organisation name of lead contractor for this deliverable: Hellenic Centre for Marine Research 

Project co-funded by the European Commission within the Sixth Framework Programme  
(2002-2006)  

Dissemination in level PU (Public) 



 2

1. INTRODUCTION 
Long-term precipitation observations at global scale are available mainly from passive 

microwave (PM) sensors onboard a number of earth orbiting satellites (TRMM, DMSP, EOS, 
NOAA), as well as visible and infrared (VIS/IR) sensors onboard geo-stationary platforms.  
The TRMM (Tropical Rainfall Measuring Mission) satellite is the first orbiter to carry a 
combination of active (Precipitation Radar, PR) and multi-channel passive microwave (TMI) 
sensors. These sensors advance our ability to estimate rainfall over both land and ocean (e.g., 
Grecu et al. 2004; Smith et al., 1997; Haddad et al., 1996).  Rain retrieval from PR (or 
combination of PR and TMI over ocean) is associated with an unprecedented accuracy and 
resolution, but is limited in terms of sampling due to the narrow PR swath width (215 km).  
The TMI and PM sensors onboard other satellites provide wider coverage (760-1000 km), but 
their observations are associated with a more complex relationship to precipitation compared 
to the PR; particularly for overland retrieval.  Additionally, PM observations offer only 
intermittent coverage of a given region of interest (currently this is approximately six to eight 
observations per day accounting for all available satellite platforms).  Contrary, VIS/IR 
sensors offer more continuous global precipitation observations at the cost of being weakly 
associated to precipitation, which requires empirical relationships strongly dependant on 
calibration. 

The Global Precipitation Climatology Project (GPCP—Adler et al. 2003) has 
advanced to the point of providing a multi-year (23+ years) 2.5-deg/monthly global 
precipitation climatology on the basis of precipitation estimates from different satellite 
sensors and gauge measurements.  The satellite observations used in GPCP are the low-orbit 
PM data from the Special Sensor Microwave/Imager (SSM/I) that go back to the mid-1987, 
and the Infrared data from geo-stationary platforms that go back to 1979.  The GPCP analysis 
used combination of algorithms for estimation of precipitation climatology from SSM/I.  
Satellite Infrared data were used in the pre-microwave era (before 1987) to extend satellite 
observations back to 1979.  The Infrared precipitation algorithm was calibrated to the PM 
analysis of the later years to get consistency in the precipitation climatology.  The merged 
satellite rainfall products were adjusted based on comparisons with gauges to remove 
systematic errors.  However, there is room for improvement in certain aspects of the GPCP 
precipitation climatology that includes the derived PM rainfall fields and their aggregation to 
derive monthly datasets. 

Monthly rainfall estimates from passive microwave observations have biases and 
random errors, which are due to three main sources: (1) uncertainties in the PM rain retrieval 
algorithms (Kummerow 1998), (2) the diurnal cycle of rainfall (Anagnostou et al. 1999), and 
(3) satellite sampling frequency (Bell et al. 1990).  In the present work we have improved the 
accuracy of the GPCP global (land and ocean) precipitation climatology derived from SSM/I 
observations by addressing those issues. 

The first issue was addressed by deriving improved SSM/I rain retrievals on the basis 
of TRMM data.  For this purpose, we combined two newly developed rain estimation 
algorithms: (1) the Dinku and Anagnostou (2005a,b) (hereafter named DA05) for overland 
rainfall estimation, and the Bayesian SSM/I retrieval of Grecu and Olson (2005) (hereafter 
named GO05) for rainfall estimation over water surface.  The GO05 algorithm is based on a 
global database of more definitive ocean precipitation profiles (and corresponding simulated 
passive microwave observations) derived from the Grecu et al. (2004) combined PR/TMI 
profiling algorithm.  The basics of the two techniques and justification of their added value to 
current SSM/I precipitation estimates are discussed in the methodology.  

The issue of diurnal rainfall variability effect was addressed using multi-year TMI 
rainfall estimates.  The hypothesis was that eight years of TMI rainfall data would be an 
adequate sample to determine the mean diurnal cycle (MDC) of precipitation at 5-deg 
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resolution over the Tropics and Sub-Tropics.  MDC information then was used to derive 
adjustments to the fixed SSM/I overpass times over each 5-deg grid to represent mean daily 
rainfall conditions.  The approach is described in the methodology section. 

The third issue, namely, the overall satellite sampling effect that includes also residual 
effects from MDC corrections, was addressed by quantifying non-linear adjustments to the 
gridded (and MDC corrected) monthly SSM/I rainfall estimates.  The adjustments were 
evaluated on the basis of the Anagnostou et al. (1999) statistical technique that utilizes 
common satellite-rain gauge monthly rainfall datasets.  The technique uses an exponential 
function (whose argument is a polynomial of the rain variable) that represents the distortion 
between the probability distribution function (pdf) of SSM/I and that of rain gauge monthly 
rainfall values.  The function parameters were evaluated using maximum likelihood 
estimation.  The pdf distortion relationship was shown by Anagnostou et al. (1999) to lead to 
a power-law adjustment of the SSM/I monthly rainfall accumulations.  Anagnostou et al 
(1999) has provided proof-of-concept of this approach on the basis of 10 years (1987-97) of 
SSM/I observations over the Northern South America region, which includes the Amazon 
basin.  The study showed a 45% (0.1) reduction (increase) in the SSM/I-gauge monthly 
rainfall root-mean-square differences (correlation) as a result of this non-linear adjustment. 

It is noted that SSM/I is not the sole PM sensor to base global precipitation 
climatology.  However, it has the advantage to be the longest PM observational dataset, which 
can be used to provide a consistent (single sensor) long-term (18+ years) analysis of 
precipitation patterns (regional, seasonal and inter-annual), signals and trends.  The 
algorithms and gauge-merging techniques used for SSM/I can readily apply to the other PM 
sensors such as AMSR and AMSU (it is already applied on TMI). 

 
 
2. PRIOR RESEARCH 

Prof. Anagnostou and his colleagues have done extensive work on precipitation 
remote sensing from microwave (active and passive) sensors on-board satellite platforms.  
Specifically, they have developed rainfall retrievals for both overland (Grecu and 
Anagnostou, 2001 and Dinku and Anagnostou, 2005a,b) and oceanic (Grecu and Anagnostou 
2002, Grecu et al. 2004, and Grecu and Olson, 2005) surface. Summary of the work and its 
significance compared to other satellite retrievals is discussed next. 

Our overland retrieval algorithms are statistical in nature with primary input being the 
brightness temperature depression at 37 and 85 GHz, which occurs due to scattering by ice 
and other frozen hydrometeors above the freezing level.  The Dinku and Anagnostou (2005a) 
approach is an overland rain estimation algorithm developed for the TRMM Microwave 
Imager (TMI). It uses passive microwave observations from multiple TMI channels, and 
TRMM Precipitation Radar (PR) rainfall estimates as reference to calibrate the algorithm 
parameters. The algorithmic components include: (i) selection of the most appropriate TMI 
channel for rain rate estimation over a given geographic region and season; (ii) delineation of 
the raining areas and classification of rain into convective and stratiform (C/S) types on the 
basis of multiple TMI channel observations; and (iii) developing brightness temperature-rain 
rate relationships for each rain type.  The rain estimates are at 0.1-deg nominal grid 
resolution.  The significance of regional variation for the PR-based TMI algorithm calibration 
was investigated over four different geographic regions: Africa, Amazon basin, Southern US, 
and South Asia.  It was found that the best single TMI channel for overland rain retrieval is 
the 37 GHz.  Global calibration (i.e., constant parameters) was found to be sufficient for all 
examined continental regimes except the mountainous region of South Asia (where 85 GHz 
gave better correlations).  Recent results (Dinku 2005) also showed that seasonal variation on 
algorithm parameters is not significant for the Tropical continental regions, indicating the 
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possibility of using a single (optimal) parameter set applied for the whole year.  Dinku and 
Anagnostou (2005a) assessed the performance of the PR-calibrated TMI algorithm with 
respect to the latest (Version 6) TRMM-2A12 surface rain estimates (McCollumn and Ferraro 
2003) and were found to perform better than TRMM-2A12. 

Dinku and Anagnostou (2005b) extended their TMI approach to develop a PR-
calibrated SSM/I overland rainfall algorithm.  The challenge of this study was that SSM/I and 
PR sensors fly onboard two different satellite platforms with varying field-of-view, geometry 
and overpass times. To overcome the problem we calibrated the SSM/I algorithm using TMI 
and PR data, by re-mapping TMI data to the SSM/I sensor resolution. This calibration 
approach is particularly attractive, as it does not rely on the availability of matched PR and 
SSM/I data.  It can readily use TRMM-PR and TMI observations to derive SSM/I algorithm 
parameters for the various tropical/sub-tropical continental regimes and seasons.  Dinku and 
Anagnostou (2005b) have shown using PR data as reference that in comparison with 
GPROF6 (McCollumn and Ferraro 2003) their algorithm may improve SSM/I rain estimation 
error statistics.  The most significant indication for improvement was with respect to the 
systematic (about 60% bias reduction) and random (an increase of 0.4 in Efficiency) error.  
Fig. 1 shows sample images of instantaneous rain fields derived from PR, TMI (Dinku and 
Anagnostou 2005a algorithm) and SSM/I (Dinku and Anagnostou 2005b and GPROF6 
algorithms).  The PR rainfall field is at 5-km resolution, while the TMI and SSM/I fields are 
at 10-km and 25-km resolutions, respectively.  We note that TMI estimates exhibit rain rate 
patterns similar to those of PR.  Yet the effect of spatial averaging is apparent in the data.  
The effect is even more evident in the SSM/I rainfall fields.  Our algorithm’s rainfall patterns 
exhibit better similarity with the PR compared to GPROF6.  For the given case, GPROF6 
overestimated low rain rate areas, and underestimated higher rain rate areas.  Another point to 
note is that the error structure of DA05 algorithm is less spatially correlated than GPROF6 
(see Fig. 2).  This is important as spatial dependence of error can introduce additional biases 
in aggregated rainfall fields at coarser resolutions. 

Starting from the premise that the cloud resolving model simulations currently 
supporting the radiometer rain retrievals over oceans may be insufficient to capture the whole 
distribution of precipitation profiles and associated brightness temperatures, we have 
developed (Grecu and Olson, 2005) a database of precipitation profiles and associated 
brightness temperatures directly from TRMM observations.  The combined PR/TMI 
algorithm developed by Grecu et al. (2004) was used to retrieve precipitation profiles directly 
from TRMM observations.  The application of the combined algorithm to one month of 
TRMM observations yielded a database of more than one million retrieved profiles and 
coincident TMI brightness temperatures.  The database was organized to facilitate the 
efficient application of a Bayesian algorithm to estimate precipitation profiles from 
radiometer-only observations.  In essence, the database of precipitation profiles is searched to 
find profiles that are compatible with the TMI observations and ancillary data; the compatible 
profiles are then combined to form a solution profile. The approach to the radiometer-only 
algorithm is illustrated in Fig. 3. 

The newly derived Bayesian retrieval algorithm was applied to a few months of TMI 
data and the estimates were compared to the combined PR/TMI of Grecu et al. (2004).  The 
comparison showed that the new Bayesian estimates are more consistent than the TRMM 
TMI facility algorithm (GPROF) with the combined TMI/PR estimates.  Although some 
regional biases exist, those are generally smaller than the systematic differences between the 
GPROF and PR/TMI combined estimates.  An example of monthly rain estimates from the 
new radiometer algorithm supported by the PR/TMI database (henceforth the Bayesian TMI-
only algorithm supported by the combined PR/TMI database will be called the PR/TMI-based 
TMI algorithm) is shown in Fig. 4. Presented on the left hand side of the figure are global 
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maps of PR/TMI-based TMI 0.50x0.50 monthly estimates of precipitation water content at 
three different altitudes, while on the right hand side are differences between the PR/TMI-
based TMI and combined PR/TMI 0.50x0.50 monthly estimates.  It is apparent from Fig. 4 
that the PR/TMI-based TMI algorithm performance is not uniform.  In some regions, e.g. the 
central-eastern part of the ITCZ, the algorithm tends to overestimate while in other regions 
(e.g. tropical western Pacific) the algorithm generally underestimates precipitation.  These 
biases are caused by differences between east and western Pacific rain systems (Berg et al. 
2002) and are an indication that the physical parameters used in the estimation, i.e. the Sea 
Surface Temperature (SST) and a Cloud Top (CT) estimate from the TMI observations along 
with the brightness temperature principal components at the pixel level, are insufficient to 
detect subtle differences in the rain systems.  Both the magnitudes of precipitation estimates 
and the differences between the two algorithms decrease with altitude.  We intend to apply the 
radiometer algorithm supported by the combined PR/TMI retrievals to SSM/I data.  Because 
the methodology to derive the database of precipitation profiles and associated brightness 
temperatures is based on physical models, the adaptation of the TMI-algorithm of Grecu and 
Olson (2005) is readily achievable. 

 
 
3. METHODOLOGY 

The goal of the work was to develop an improved global (land and ocean) 
precipitation climatology on the basis of 18+ years (since 1987) of TRMM-calibrated and 
gauge-adjusted Special Sensor Microwave/Imager (SSM/I) rainfall fields.  To achieve our 
goal we addressed the following specific objectives: 

1. Integrate our newly developed schemes of TRMM-based calibration for TMI overland 
and ocean retrieval in a single SSM/I global rain estimation algorithm; 

2. Reprocess the SSM/I orbit data on the basis of the above algorithm to derive a multi-
year (1987-present) rainfall dataset at 0.25-deg nominal grid resolution, and from 
those derive aggregate fields up to 2.5 degrees and monthly space-time scales; 

3. Evaluate regional adjustment functions for the SSM/I rain accumulations to correct for 
MDC and satellite sampling effects; 
A general protocol is established that identifies the fundamental phases involved in 

this study: (1) The acquisition, preparation and priming of the data; (2) Apply our algorithms 
to derive the best quality SSM/I precipitation fields for the period 1987-present; (3) 
Determine the MDC adjustment to the SSM/I monthly estimates based on TRMM data; (4) 
Evaluate non-linear adjustments to SSM/I data on the basis of regional/monthly rainfall 
comparisons with gauge measurements; (5) Assess the results and compare against existing 
SSM/I products on the basis of independent observations; (6) Determine trends in SSM/I 
precipitation and compare to those derived from GPCP datasets. These aspects are discussed 
next. 
 
3.1  Dataset 

To address our objectives we compiled a database consisting of the following 
observations: 

 TRMM PR and TMI: Tropics/Sub-tropics coverage, 1998-present; 
 SSM/I: global coverage, 1987-present; 
 Gauges measurements over the globe (see Fig. 5 for station locations) for a period 

spanning from 1987 to present. 
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3.2  SSM/I Precipitation Retrievals 
As discussed above two algorithms was used for rainfall estimation from SSM/I 

observations for overland and ocean retrievals.  The algorithms and issues regarding 
integration and potential extensions are discussed in the following sub-sections: 

3.2.1  The overland SSM/I retrieval 
Since the early SSM/I retrievals of Spencer et al. (1989) and Olson (1989), a number 

of algorithms have been developed, few of which have been for overland rain estimation.  The 
most popular SSM/I overland rain retrievals are those of NOAA/NESDIS (Grody 1991; 
Ferraro and Marks 1995; and Ferraro 1997) and the Goddard scattering algorithm (GSCAT) 
developed at NASA/GSFC by Adler et al. (1994).  Conner and Petty (1995) described 
additional techniques and made validation comparisons with the NOAA/NESDIS and 
GSCAT algorithms.  The most recent version of an operational SSM/I rainfall algorithm is the 
Goddard Profiling (GPROF) algorithm that was extended by McCollum and Ferraro (2003) 
for overland rainfall estimation.  This algorithm is calibrated using TRMM-PR and used to 
produce the latest version (GPROF6—Version 6) of global SSM/I rain estimates at NASA 
and NOAA. 

Dinku and Anagnostou (2005b) have presented a SSM/I overland rain retrieval that is 
a follow up to the DA05 (Dinku and Anagnostou 2005a) algorithm originally developed for 
TMI.  The DA05 algorithm uses passive microwave (PM) observations from multiple 
channels, and TRMM Precipitation Radar (PR) rainfall estimates (rainfall rates and 
precipitation classification information) as reference to calibrate its parameters. The algorithm 
consists of the following components: (i) selection of the most appropriate PM channel over a 
given region; (ii) delineation of rain areas and classification of precipitation into Convective 
and Stratiform (C/S) type; and (iii) selection of the optimal brightness temperature-rain rate 
relationship for each rain type.  The standard deviation of the 85-GHz brightness temperature 
array surrounding a PM pixel, and the 85-GHz Polarization Corrected Temperature (PCT—
Spencer et al. 1989) of that pixel are used as predictors for discriminating rainy from non-
rainy pixels.  These predictors are regressed against binary PR-derived rain/no-rain 
classification estimates over land. The model for C/S classification is also a multi-linear 
regression type involving seven parameters extracted from the different PM channels.  The 
reference data used for C/S classification algorithm calibration come from the PR (TRMM-
2A23) rain type product.  The probability matching technique is used to derive brightness 
temperature-rain rate (Tb-RR) relationships.  As shown in Dinku and Anagnostou (2005a) 
stratiform precipitation cells’ Tb-RR relationship is non-linear, while a linear relationship 
provides the best fit for the convective precipitation cells.  A flowchart of the algorithm is 
shown in Fig. 6, while for details on the various algorithm components the reader is referred 
to Dinku and Anagnostou (2005a). 

The major challenge in applying the PR-based calibration procedure of DA05 on 
SSM/I observations is the difficulty in matching (both in space and time) observations from 
the two sensors (PR and SSM/I).  Dinku and Anagnostou (2005b) have explored two 
calibration scenarios that use sole TRMM data.  The first approach maps the various TMI-
channel brightness temperatures at the spatial resolutions of the corresponding SSM/I 
channels.  The second (and simpler) TRMM-based calibration approach involves calibration 
of the DA05 retrieval algorithm on the basis of coincident PR rainfall and TMI brightness 
temperature data averaged at 0.25-deg grid resolution (instead of the original 0.1-deg used in 
DA05), without going through remapping.  The rationale of both approaches is that the TMI 
and SSM/I channel frequencies are identical, with the only exception being the 21.3 GHz TMI 
channel that differs by ~1 GHz from the corresponding 22.23 GHz channel of SSM/I.  The 
remapping procedure used in the first approach is a simple distance-weighted averaging, and 
it produces “SSM/I-like” brightness temperatures.  After remapping, PR is used to calibrate 
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the DA05 algorithm based on “SSM/I-like” TMI data at 0.25-deg grid resolution.  Dinku and 
Anagnostou (2005b) have shown that remapping procedure produces reasonable “SSM/I-like” 
brightness temperatures.  Dinku and Anagnostou (2005b) after comparing the performance 
achieved by each approach concluded that the second scenario performs the best.  In addition, 
they concluded that best performance is achieved when the rain delineation and C/S 
classification parameters are evaluated at 0.25-deg while the Tb-RR relationship parameters 
are evaluated at 0.1-deg resolution.  Their conclusion indicates that calibration of rain rate 
relationships at higher resolution gives better results even though the parameters are applied 
to lower resolution data, while this is not applicable in the evaluation of rain area and C/S 
classification parameters.  This is because in the case of regression, the transition from 0.1 to 
0.25-deg grids involves consistent averaging of both regression parameters (i.e., brightness 
temperature and rain rate), while this is not the case for rain area delineation and C/S 
classification.  Consistently with the findings of Grecu and Anagnostou (2005b) the DA05 
algorithm devised in this work uses rain delineation and C/S classification parameters 
computed at 0.25 deg, while the Tb-RR regression parameters were determined from PR-
calibration of TMI at 0.1-deg resolution. 

Dinku and Anagnostou (2005a) had investigated regional differences in the DA05 
algorithm calibration.  With the exception of the mountainous areas in South Asia it was 
noted that a global algorithm would perform similarly with a regionally calibrated algorithm.  
The 37 GHz was found to be the most suitable PM channel for Tb-RR rain relationships.  It 
was noted, however, that for satellite pixels with mountainous background the 85 GHz might 
be more suitable than 37 GHz for rainfall rate relationships.  This was indicated for the TMI 
retrieval over the mountainous complex in South Asia.  More work on this aspect is needed to 
verify the results in other mountainous regions in Tropics and Sub-Tropics.  Another aspect of 
the TRMM-based calibration is the extrapolation of the algorithm parameters over regions not 
covered by TRMM (mid latitudes).  Chronis et al. (2004) has demonstrated through 
comparison with gauge data in central Europe that using the DA05 algorithm with parameters 
calibrated by TRMM over the continental US could result in good accuracy SSM/I retrievals 
over Europe (where TRMM data are not available).  On the basis of collective evidence from 
our past studies (Dinku and Anagnostou 2005a,b and Chronis et al. 2004) we use the DA05 
algorithm with global parameters calibrated using data from all the continental regimes under 
TRMM-PR coverage, with the exception of the mountainous regions where we conduct 
separate calibration (including selection of the best PM channel). 

On-going work by Dinku and Anagnostou (2006) has also explored the significance of 
seasonal calibration of DA05 algorithm parameters.  They investigated four continental 
regimes US, Africa, Amazon and South Asia.  The conclusions from this study are that the 
effect of seasonal calibration versus using a global parameter set is negligible. However, they 
found differences in the accuracy of rain retrieval among the different seasons, such as: (1) 
the pre-monsoon season offers the best accuracy in all regions; (2) the worst accuracy for the 
Africa and Amazon regions is during the post-monsoon season, while over South Asia it is 
during the monsoon season.  In the second year of this work we plan to further explore 
seasonal calibration significance before we decide on a single (or multi-season) set of 
algorithm parameters. 

Our overall observation based on results presented in Dinku and Anagnostou 
(2005a,b) and on-going work by Dinku (2005) is that DA05 algorithm applied on SSM/I and 
TMI data offers improvements over GPROF6 used to derive the PM rainfall datasets in 
GPCP.  For example, Dinku and Anagnostou (2005b) have shown that SSM/I rain estimation 
over Africa using DA05 algorithm exhibits 60% less bias and a 0.4 increase in the Efficiency 
score [defined as:    rainPRVarErrorVar _1 ] compared to GPROF6.  This is also supported 
by the sample images of instantaneous rain fields derived from PR, TMI (DA05 algorithm) 
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and SSM/I (DA05_SSM/I and GPROF6 algorithms) observations shown in Fig. 1.  As 
discussed in a previous section, the SSM/I-DA05 rainfall patterns exhibit better similarity 
with the PR compared to the SSM/I-GPROF6.  The overall statistical agreement between PR, 
SSM/I and TMI estimates is presented in Fig. 7 that shows the cumulative distribution 
functions (CDF) of the different algorithm estimates.  As shown in the figure, the SSM/I-
DA05 CDF is closer to the PR CDF compared to the SSM/I-GPROF6 CDF.  An important 
point to note from both figures is that estimates from DA05 algorithm applied on TMI data 
(TMI-DA05 results) are associated with a 46% decrease (0.1 increase) in random error 
(correlation) relative to corresponding estimates from DA05 algorithm applied on SSM/I data 
(SSM/I-DA05).  This indicates the great advantage gained by the increased resolution TMI 
observations, at the cost, though, of a smaller swath, which penalizes the use of the data in 
terms of sampling. 

 
3.2.2  The oceanic SSM/I retrieval 
The algorithm of Grecu et al (2005) was adapted and applied to estimate precipitation 

over oceans from SSM/I observations.  As previously mentioned, the algorithm builds upon 
Prof. Anagnostou’s previous work and provides a flexible, physical approach to incorporate 
into retrievals the information contained in the PR/TMI observations.  The Bayesian 
estimation procedure on which the algorithm is based is similar in essence to other Bayesian 
procedures for estimating rain from radiometer observations (see for example Kummerow et 
al. 2001).  That is, the estimation relies on a large database of precipitation profiles and 
associated brightness temperatures and a searching procedure is employed to determine the 
profiles in the database whose brightness temperatures are similar to the observed brightness 
temperatures.  A statistical averaging is employed to provide a unique solution when more 
than one profile similar in terms of brightness temperatures to the observations exist. 

The main difference between our approach and most of the previous approaches 
resides in the fact that the database is constructed directly from TRMM observations.  In 
many instances, cloud resolving model (CRM) simulations are considered for constructing the 
databases or the parameterizations needed in passive microwave retrievals.  They are 
physically based, flexible, and can shed light on phenomena difficult to understand and 
investigate from direct observations.  However, there are serious drawbacks associated with 
the use of CRMs.  First, the precipitation distribution in nature may be different from that 
simulated by CRMs.  This is because CRMs are initialized using a relatively small set of 
large-scale environmental conditions that may not be statistically representative of the 
distribution of large-scale environments in nature.  Second, CRMs might be deficient in 
handling ice processes, resulting in distributions of simulated 85-GHz brightness temperatures 
different from those observed in nature (Bauer, 2001).  These drawbacks may be responsible 
for the differences between precipitation estimates from the version 5 TRMM Precipitation 
Radar (PR) and TRMM microwave imager (TMI) algorithms (Kummerow et al. 2001).  
Although these differences are reduced in the version 6 algorithms, some discrepancies still 
exist between the PR and TMI estimates (these will be illustrated in Section 3).  From this 
perspective, but also for the benefit of future precipitation satellite missions, it is desirable to 
construct a precipitation-brightness temperature database free from the weaknesses of 
databases derived from current CRM simulations.  Such a database can be constructed from a 
large set of precipitation profiles and associated brightness temperatures derived directly from 
TRMM observations.  The combined algorithm of Grecu et al. (2004) is used in this respect.  
The combined algorithm derives solutions consistent with both the PR and TMI observations.  
This consistency is ensured through physical models that simulate the PR reflectivities and 
the TMI brightness temperatures and an objective mathematical is used to determine the 
precipitation profiles that yield the PR reflectivities and TMI brightness temperatures closest 
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to the actual observations.  Although in the retrieval process only the TMI brightness 
temperatures need to be simulated, once the final solution is determined brightness 
temperatures corresponding to different radiometers, e.g. SSM/I, can be readily simulated.  
Thus, a large database of precipitation profiles and associated SSM/I brightness temperatures 
can be readily constructed.  Schematic demonstration of the process for constructing the 
database and further using it for passive microwave retrievals is presented in Fig. 3.  As noted 
in the figure, PR and TMI observations are combined to retrieve precipitation profiles 
(vertical lines) in the overlap swath using the Grecu et al. (2004) approach.  Brightness 
temperatures were then simulated using a physical model based on the combined PR/TMI 
observations for selected PM frequencies of the SSM/I sensor resolutions. These retrieved 
profiles form the precipitation-brightness temperature database for our SSM/I oceanic 
retrieval algorithm.  Application of the database to SSM/I observations was done be through 
the classic Bayesian approach.  Namely, SSM/I brightness temperatures were used to find 
radiatively compatible precipitation profiles in the database.  The compatible profiles were 
then combined to form the solution profile. 
 A significant difference between our approach and other Bayesian radiometer retrieval 
algorithms is the organization of the database.  The database is stratified by an estimate of the 
SST and passive-based estimate of the cloud top height, more precisely the PR echo top 
height (ET).   The ET estimate is simply derived by regressing the simulated brightness 
temperatures in the database against the PR echo top height.  The linear regression explains 
more the 75% of the total variation in the PR ET.  Given the good performance in estimating 
the ET and the broad distribution of ET, the ET estimator is an effective parameter in 
determining the regions of the database where the solution is sought.  This makes the solution 
computationally effective in spite of the large size of the database (approximately 20,000 
profiles), which is significantly larger than the current GPROF’s database. 

As already mentioned, results show that our Bayesian estimates are more consistent 
than the TRMM TMI facility algorithm (GPROF) with the combined PR/TMI estimates.  
Given the use of PR observations, the PR/TMI estimates are considered more reliable rain 
estimates than any passive-only rain estimates, and therefore, considered as a reference.  It is 
expected that our Bayesian algorithm supported by the TRMM database will produce superior 
rain estimates (and consistent with the TRMM PR/TMI) when applied to SSM/I observations.  
Furthermore, we have identified in our database a fairly large number of profiles with low 
freezing levels (lower than 2.0 km), which makes us believe that the algorithm will perform 
satisfactorily at mid and high/low latitudes as well.  Finally, given that both the statistical 
overland and Bayesian ocean retrievals are formulated based on the same reference dataset 
(i.e., TRMM data) we expect consistent results over land and ocean. 

 
3.2.3  Integration and open issues 
As stated above the advantage of the two algorithms is that they are based on the same 

calibration dataset, i.e. PR and TMI over both land and ocean.  A land/ocean/coast mask was 
devised to facilitate the selection of the appropriate algorithm.  At coastal areas we initially 
used the statistical land retrieval algorithm, but these pixels were flagged uncertain.  There are 
open issues associated with PM rainfall estimation that need further research. The two major 
ones are: 

 Rain estimation over mountainous regions.  Currently on-going research by Dinku 
(2005) shows that there are differences in the algorithm calibration for PM pixels 
located over mountainous terrain versus other areas.  An important difference is 
that of the selection of the most appropriate PM channel to relate to rainfall.  
Dinku and Anagnostou (2005a) found that the 37 GHz is superior to the typically 
used 85 GHz over all major convective regions that are non-mountainous.  
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However, in regions associated with complex terrain the 85 GHz is the channel 
giving the best correlation with rainfall.  We are currently investigating this issue 
for all mountainous areas located within the TMI coverage.  Results from this 
research will be implemented in the newly developed SSM/I rainfall algorithm. 

 The Convective/Stratiform classification.  The DA05 performance to classify a 
satellite pixel as convective vs. stratiform is not high (Dinku and Anagnostou 
2005a showed that we can explain about 30% of the total variance).  In the same 
study we showed that by improving C/S classification (using the C/S classification 
from PR) alone we could get up to 35% reduction in the rain estimation error 
variance.  Consequently, a definitive path to further reduce PM retrieval 
uncertainty is through the better classification of precipitation.  This could be 
achieved by introducing information on the life cycle of the storm.  A way to do 
that is using cloud-tracking information extracted from IR data and combining it 
with the PM channel classification parameters.  This will be a subject of future 
research. 

 
3.3 Deriving the SSM/I Precipitation Dataset 

We developed an automated procedure that applies our combined ocean/land SSM/I 
retrieval on all SSM/I orbits since 1987 and retrieves surface rainfall rates, cloud top height 
(only for over ocean), and convective/stratiform precipitation index at 0.25-deg nominal grid 
resolution.  Potentially, our procedure could be implemented at NASA as well as at 
NOAA/NESDIS for future processing (or re-processing) of SSM/I data.  SSM/I products have 
been aggregated at different resolutions ranging from 0.5-deg/daily to 2.5 deg/monthly.  The 
aggregated datasets at different resolutions include the following parameters: (1) average 
conditional rainfall rate (in mm/h), (2) mean, max and minimum cloud top height (in km), (3) 
rain fraction (in %), and (4) convective precipitation fraction (in %).  Basic error statistics of 
the SSM/I monthly estimates were evaluated at various spatial resolutions through 
comparison with the ECMWF gauges and limited buoy data in the Pacific and Atlantic.  For 
this purpose, over land we selected pixels with more than 4 gauges per pixel to evaluate 
statistics. We expect to make our validated SSM/I rainfall products and error statistics 
publicly available at the end of the second year of the project. 
 
3.4 Evaluate Diurnal and Sampling Effects 

The effects of mean diurnal cycle (MDC) of precipitation and satellite sampling were 
assessed on the basis of two approaches.  The first approach uses the TMI rainfall products at 
sensor resolution to derive the MDC within the ±40-deg TMI latitudinal zone.  The second 
approach uses the statistical algorithm of Anagnostou et al. (1999) to quantify non-linear 
adjustments to the gridded monthly SSM/I rainfall estimates on the basis of the ECMWF 
global gauge network measurements.  The schemes are discussed next. 
 
 3.4.1  MDC correction 
 The globe was divided in a grid box of 5-deg resolution.  The TMI rainfall estimates 
from each grid cell over the eight years of data were averaged at hourly intervals to derive the 
climatological mean precipitation at each hour.  The MDC correction factor was then 
determined from the following formulae: 

  
)(

),,(,1);(
uAh

shuRsuRsuf    (1) 

where R(u,h,s) is the mean TMI rainfall of grid cell “u” at hour “h” and season “s”.  The 
),( suR  represents the mean TMI rainfall at grid cell “u” of season “s”.  Ah(u) represents the 

time domain (within the nearest hour) of SSM/I overpasses over grid cell “u”.  The 
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significance of deriving MDC correction factors for different seasons was investigated before 
applying the MDC corrections to SSM/I data.  If we find insignificant seasonal variations in 
MDC we will use single MDC correction factors representative of all seasons combined.  
Furthermore, we plan to examine the regional variations of MDC correction factor.  On the 
basis of the above analysis we may change the grid box to coarser or finer cell resolution.  
The significance of MDC correction to SSM/I rainfall climatology will by assessed using the 
gauge network data (both ECMWF and other local data).  It is noted that MDC correction 
may only apply on the Tropics/Sub-Tropics (±40-deg latitude) where we have available TMI 
data.  At mid-latitudes we cannot apply any MDC correction, and we will rely solely on the 
non-linear adjustment to be derived from SSM/I-gauge comparisons.  This is discussed next. 
 
 3.4.2  Non-linear rain gauge-based adjustment 
 The second scheme is the method of Anagnostou et al. (1999).  The method utilizes a 
statistical concept, which evaluates the difference between two instruments (i.e., the SSM/I 
and the ECMWF global gauge network) in terms of their probability density functions (pdf).  
The two instruments are assumed to measure the same variable but with varying degrees of 
accuracy.  The less reliable measurable (i.e., the SSM/I retrieval) is assumed to be a 
“distortion” of the other more definitive measurable (grid-average ECMWF rainfall 
measurement).  The distortion is defined as: 
 g1(x)= exp[+h(x)] g(x)   (2) 
where g(x) and g1(x) are the pdfs of the more (ECMWF) and less (SSM/I) reliable 
instruments, accordingly (Kay and Little, 1987).  The exponential function is the pdf 
distortion factor, with h(x) being a polynomial of x with parameter vector .  Calculation of 
the pdf distortion factor parameters is done using maximum likelihood estimation (Fokianos 
et al., 1998).  Derivations of the main equations used for parameter estimation are discussed 
in Anagnostou et al. (1999).  Anagnostou et al. (1999) have shown that the distortion function 
can be used to evaluate a non-linear (i.e. power-law) adjustment relationship for the less 
accurate SSM/I rainfall estimates for specified spatial scales.  In this study we evaluated non-
linear adjustments to our SSM/I monthly rainfall estimates at 0.5-deg resolutions.  Details of 
the procedure are discussed next. 
 Suppose that x is a random sample of ECMWF-measured monthly rainfall rates at a 
specified space-time scale, and y is a corresponding random sample of SSM/I-retrieved 
rainfall rates at the same scale, with n0 and n1 sample sizes, respectively.  The distortion 
function (Eq. 2) between x and y pdfs is used to quantify a power-law adjustment relationship 
for the SSM/I rainfall estimates: 
 b

ISSMISSM aRR
adj //     (3) 

where 
adjISSMR / and ISSMR / are adjusted and unadjusted SSM/I monthly rainfall estimates at the 

selected spatial resolution.  The parameters (a,b) of the adjustment relationship are 
determined by minimizing the following objective function with respect to a and b: 
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where g1 are the jumps of the step cdf function at values yi.  The g0 is the distortion function, 
here it will be a second order polynomial: g0(yi)=exp[+1yi+2yi

2], with parameter values ̂ , 

1̂ , and 2̂  being the roots of a system of equations described in Anagnostou et al. (1999) 
(see equations 4-6). 
 Application of the method to SSM/I rainfall fields was as following.  First we 
aggregated SSM/I and ECMWF data at 0.5-deg monthly accumulations.  We selected all 
SSM/I pixels with corresponding gauge data over large periods (8+ years).  Then we selected 
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common areas to determine the adjustment function parameters (a,b).  The areas were selected 
large enough to include several SSM/I pixels with corresponding gauge measurements to 
ensure statistical significance in determining pdfs.  Initially, we considered those areas to be 
the 5-deg grid cells used in MDC correction.  For each grid cell we used the Anagnostou et al. 
(1999) method to determine the adjustment function, which was applied uniformly to all 
SSM/I pixels within that cell. 
 There are two aspects about this approach that need further discussion.  First, we are 
making an assumption of uniformity over large areas for the adjustment function parameters.  
Anagnostou et al. (1999) conducted an experiment to determine the spatial variability of the 
adjustment function parameters over similar size areas and concluded that parameter values 
are more sensitive to the satellite overpass time (e.g., F8, F11, F13 versus F10) than 
geographic location.  Another observation is that parameter a, which controls the satellite 
estimation bias, experiences higher fluctuations than b.  The above observation indicates that 
the diurnal pattern of rainfall, which is spatially variable (Negri et al., 1994), is a dominant 
error factor for the SSM/I monthly rainfall.  Consequently, the MDC adjustment prior to the 
gauge-based non-linear adjustment would serve well the purpose of correcting SSM/I 
monthly estimates for sampling effects.  In regions where MDC adjustment is not applied 
(mid to northern/southern latitudes) we expect higher uncertainty.  However, at mid and 
northern latitudes we have denser gauge networks, consequently more data to better 
determine sampling effects. 
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Figure 1: Examples of instantaneous rain rate maps retrieved from PR, TMI (Dinku and 

Anagnostou 2005a algorithm) and SSM/I (ALG2b—Dinku and Anagnostou 
2005b, and GPROF6 algorithms). Lines show the PR swath. 
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Figure 2: Spatial error correlations of SSM/I rain estimates retrieved from DA05 (dashed 

line) and GPROF6 (solid line) algorithms.  Error is defined as the difference of 
SSM/I estimates versus PR rainfall rates. 

 
Figure 3: Schematic of the radiometer-only precipitation profile estimation method.  On 

the left-hand side, PR and TMI observations are combined to retrieve 
precipitation profiles (vertical lines) in the overlap swath.  These retrieved 
profiles form the precipitation-brightness temperature database for the 
radiometer-only algorithm.  On the right-hand side, radiometer brightness 
temperatures (TB’s) are used to find radiatively compatible precipitation 
profiles in the PR/TMI database.  The brightness temperatures are derived 
using a physical model based on the combined PR/TMI observations for 
selected PM frequencies and sensor resolutions. The compatible profiles are 
combined to form the solution profile. 
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Figure 4:  Monthly 
0.50x0.50 estimates of 
precipitation water 
contents from the 
PR/TMI-based TMI 
algorithm at three 
different altitudes. 
The bottom panels 
show the actual 
estimates (i.e., 
PR/TMI-based TMI 
estimates), while the 
top panels show the 
differences between 
the PR/TMI-based 
TMI and the 
combined PR/TMI 
estimates. 
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Figure 5:  The ECMWF global gauge network. 

 
 
 

 

 
 
 
 
 
 
 
Figure 6: 
Flowchart of 
the DA05 
overland 
passive 
microwave 
rainfall 
estimation 
algorithm 
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Figure 7:  Cumulative Density Functions (CDF) of coincident overland rainfall rates 

(over Africa) retrieved by PR (2A-25 algorithm), TMI (DA05 algorithm), and 
SSM/I (DA05 & GPROF6 algorithms) sensor observations 
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