
RESEARCH ARTICLE

One Step forward: Benthic Pelagic Coupling
and Indicators for Environmental Status
Panagiotis D. Dimitriou1, Nafsika Papageorgiou1,2, Christos Arvanitidis2,
Georgia Assimakopoulou3, Kalliopi Pagou3, Konstantia N. Papadopoulou2,
Alexandra Pavlidou3, Paraskevi Pitta2, Sofia Reizopoulou3, Nomiki Simboura3,
Ioannis Karakassis1*

1 University of Crete, Biology Department, 70013 Heraklion, Crete, Greece, 2 Hellenic Centre for Marine
Research, 71013 Heraklion, Crete, Greece, 3 Hellenic Centre for Marine Research, 19013 Anavyssos,
Greece

* karakassis@biology.uoc.gr

Abstract
A large data set from the Eastern Mediterranean was analyzed to explore the relationship

between seawater column variables and benthic community status. Our results showed a

strong quantitative link between the seawater column variables (Chlorophyll a and Eutrophi-

cation Index) and various indicators describing benthic diversity and community composi-

tion. The percentage of benthic opportunistic species increased significantly in the stations

with high trophic status of the seawater column and so did the strength of the coupling

between values of seawater column and benthic indicators. The Eutrophication Index

threshold level of 0.85, separating the “Bad and Poor” from “Moderate to High” conditions

could serve as an acceptable critical value above which there is a readily observable

change in benthic community composition.

Introduction
Today it is understood that eutrophication is one of the prominent anthropogenic vectors that
changes the state of all aquatic ecosystems from the Arctic to the Antarctic [1], with severe eco-
logical and economic consequences. Among a number of definitions for eutrophication (Kit-
siou & Karydis [2] reviewed in Karydis [3]), a definition suggested by Ferreira, Andersen (4]
and adopted by the European Union proposes that eutrophication is the increased growth/
production that results from enhanced nutrient input especially nitrogen and/or phosphorus.
Furthermore, the diagnosis must be confirmed by an 'undesirable disturbance' to the balance of
organisms and seawater quality that may follow from increased production (increased growth,
primary production and biomass of algae). It has been subsequently argued [5–7] that research
on marine coastal eutrophication, despite some recent successful examples, is still in its infancy
and there is room for a new paradigm [8] based on the interaction of the components of the
highly complex coastal marine ecosystem.

In the context of the Water Framework Directive (WFD) and European Marine Strategy
Framework Directive (MSFD), a series of indicators focusing on seawater column or benthos
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have been used to define the Ecological Status of the coastal areas [9]. However, there has been
little effort to co-examine the interaction between these two components of the ecosystem,
which would be expected to co-vary in a wide range of anthropogenic pressures. Kitsiou & Kar-
ydis [2] argued that, although there is a tendency to increase the number of variables used for
quantitative assessment of eutrophication, it is doubtful whether they are all necessary in
assessment studies. They concluded that the number of variables needed is rather limited: inor-
ganic nitrogen (nitrate, nitrite, and ammonia), inorganic phosphorus (orthophosphates) and
production of organic matter (Chlorophyll a (Chl-a), phytoplankton cell number and macro-
phyte biomass).

Many indicators have been proposed for the classification of coastal seawater bodies into
oligotrophic, mesotrophic and eutrophic, based on their trophic status (reviewed by Karydis
[3]). Abiotic indices are usually based on nutrient concentrations; for example, the N/P ratio
[10] or nutrient algorithms [11] or specific nutrient variables [12–14]. A eutrophication scale
based on Chl-a concentration was first proposed by Karydis [15] and was used extensively for
the Greek seas. It included four levels of eutrophication: eutrophic, higher mesotrophic, lower
mesotrophic, and oligotrophic. This scale was later modified by Simboura et al. [16] to comply
with the five levels of ecological status implied by the WFD. The proposed scale based on Chl-a
concentrations is:<0.1 μg L-1 High, 0.1–0.41 μg L-1 Good, 0.4–0.61 μg L-1 Moderate, 0.6–
2.211 μg L-1 Poor and>2.211 μg L-1 Bad.

Two multimetric indices have been proposed during the past ten years: the Trophic Index
(TRIX) [17] and the Eutrophication Index (EI) [18]. The formula of TRIX is a linear combina-
tion of the logarithm of four variables: Chl-a, dissolved inorganic nitrogen (DIN), total phos-
phorus (TP) and the absolute percentage of deviation from oxygen saturation, with a five-level
scale added by Pettine et al. [19] for Italian seawater bodies. The EI is another multimetric
index calculated using nutrient (nitrite, nitrate, ammonia, phosphorus) and Chl-a concentra-
tions, and also uses a five-level scale. It was found efficient in discriminating eutrophic levels
characterizing oligotrophic, mesotrophic and eutrophic conditions. Ferreira et al. [4] provided
an extended review on eutrophication indicators and monitoring capabilities in the context of
the MSFD.

On the other hand, benthic macrofauna is an excellent ecosystem component which mirrors
the ecological status of the marine environment, and therefore it has become a standard compo-
nent of marine environmental monitoring [20]. A number of benthic ecological indicators have
been proposed in the past 12 years as a means for assessing disturbance of the benthic environ-
ment. Among these, AZTI Marine Biotic Index (AMBI) [21], Multivariate-AMBI [22], Benthic
Index (BENTIX) [23], Benthic Quality Index (BQI) [24] as modified in Leonardsson et al. [25]
and the Shannon Diversity index H’ [26] are the most widely used. More recently, indicators
based on higher taxonomic levels such as the Benthic Opportunistic Polychaeta Amphipoda
index (BOPA, [27] and the BQI-Family index [28] have been discussed as potential tools for the
implementation of theWFD (e.g., [4, 29–41]) in different disturbance/pollution gradients, geo-
graphical regions and benthic habitats. Although all the above indices use different methods,
they are all based on the well-known paradigm of benthic succession along gradients of organic
enrichment [42] and they aim to classify the Ecological Status of a certain marine ecosystem
into the five-level scale imposed by theWFD.

There is little doubt that benthic life depends on pelagic processes. However, there have
been complications when attempting to develop quantitative descriptions of benthic pelagic
coupling [43]. Up to now, various models relating pelagic primary production to oxygen
demand in sediments [44–47], organic matter content in sediments [48, 49], or biogeochemical
sediment variables [50] have been proposed. However, no quantitative relationship has been
established between the variables in the seawater column and the ecological condition of the
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sediment as described by diversity or ecological quality indices. An exception to this was the
CSTT [51] study, which suggested that a concentration of chlorophyll (10 mg m-3 during the
summer months) in the seawater column could be used as a threshold imposing degradation in
Scottish lochs. This value has been cited/reproduced in the literature (see Tett [52]) without
either confirmation or falsification from other relevant studies. Similarly, it has been suggested
that the hypoxia threshold of dissolved oxygen concentration in the seawater column, assumed
to be 2 mg L-1 by Diaz [53], may vary considerably among different benthic organisms [44]
and therefore it cannot be adequately captured by a single universal threshold.

As stated above, the benthic indicators are widely trusted since they reflect and integrate the
environmental pressures in a given site. When the major factor affecting the environmental
quality is eutrophication, it would be expected that the geochemical variables in the seawater
column are driving the benthic system indicators towards the low quality end values. In this
context it would be useful to know what levels of eutrophication (and related variables) result
in “unacceptable” conditions regarding the benthos; therefore, it is reasonable to find out
whether there is a dose-response curve connecting the seawater column variables or indicators
with the condition of the benthic communities. In addition, it would be useful to know if there
is a threshold in these seawater column variables beyond which the benthic community
becomes invariably degraded.

The aim of the present paper was to analyze a large data set from a generally oligotrophic
environment to explore the relationship between seawater column variables and benthic com-
munity status. The hypotheses tested here are that (a) changes in seawater column trophic sta-
tus affect species composition patterns of benthic macrofaunal communities and, therefore, (b)
changes in seawater column trophic status affect the values of benthic indicators and the result-
ing assessment of Ecological Status.

Methods

Dataset description
A series of data sets were used, comprising samples collected from stations located in different
seas of the Eastern Mediterranean basin as the result of various scientific and monitoring pro-
grams. No specific permissions were required for these locations/activities. The field studies
did not involve endangered or protected species. Sampling locations, dates and sampling infor-
mation are provided in S1 Table. The condition on which these data sets could be used for the
analysis was that both benthic macrofauna and seawater column had been sampled simulta-
neously. Seawater column variables had to include measurements of Chl-a concentration as
well as inorganic nutrients concentration (PO4

3–, NO3
–, NO2

– and NH4
+) at the bottom layer

of seawater. Dissolved oxygen (DO) concentration, sediment total organic carbon (TOC),
redox potential (Eh), sea bottom depth (Depth) and the sediment silt and clay content (% Silt
& Clay) data, wherever available, were also used. All samples were collected from coastal areas
where the main source of the organic matter supplied to the seabed was phytoplankton precipi-
tation. Consequently, samples taken in the vicinity of allochthonous organic matter sources
such as aquaculture, ports, sewage or industrial wastes and other forms of disturbance such as
dredging or heavy metal toxicity were excluded. The dataset used in the present study includes
published data [34, 35, 54–64], as well as unpublished data from the University of Crete and
the Hellenic Center of Marine Research (HCMR). Overall, it included 126 sampling stations;
34 in the Ionian Sea, 68 in the Northern Aegean Sea and 24 in the Southern Aegean or Cretan
Sea. Data sets for abundances of benthic species were accepted for the data analysis on the con-
dition that three to five replicates were collected from each sampling station.
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Seawater samples were collected using Niskin bottles. Chl-ameasurements were carried out
by seawater filtration (GFF 0.7 μm) and fluorometer measurement, DO byWinkler method or
calibrated Conductivity–Temperature–Depth instruments, and nutrient measurements were
carried out with the appropriate chemical protocols. TOC was determined from triplicate core
tubes (4.5 cm internal diameter) by means of a CHN Analyzer following the procedure of
Hedges and Stern (1984) and Eh was measured in core samples at 2–4 cm intervals from the
seawater–sediment interface by means of an electrode standardized with Zobell’s solution. The
% Silt & Clay content was measured by sieving. Detailed information about locations, dates,
depths, and sampling gears can be found in S1 Table.

Diversity and Biotic indices
All taxonomic names included in the accepted data sets were checked for synonyms by means
of the TaxonMatch online tool of the World Register of Marine Species portal (http://www.
marinespecies.org/aphia.php?p = match). The abundance of benthic species was used to calcu-
late a number of established diversity indices such as total number of species (S), total number
of individuals (N), Hurlbert’s ES(10), and ShannonH’ (log2) using the PRIMER 6.1 software
[65]. In addition, a series of biotic indices widely used in the context of the WFD were calcu-
lated. In all cases the formulas provided by the authors have been followed, as described in the
respective publication: for M-AMBI [22], the calculation program, using default settings and
species inventory provided in the authors’ web-site (http://ambi.azti.es) dated 3/2012; for BEN-
TIX [23], the excel add-in provided at http://www.hcmr.gr/gr/listview3.php?id=1195; in the
cases of BQI [24] as modified in Leonardsson et al. [25] and BQI-Family [28], the Biological
Indices Calculation Tool (BICT) online calculation tool hosted at Lifewatch Greece website
(http://www.lifewatchgreece.eu) was used with the species or families tolerance values
(ES500.05) list provided by [28] at (http://www.sciencedirect.com/science/article/pii/
S1470160X12000544#MMCvFirst). Eutrophic Index (EI) [18] was also calculated using the
instructions provided by the authors. The EI classifies the seawater body in five Ecological Sta-
tus levels: (a) less than 0.04, (b) 0.04–0.38, (c) 0.38–0.85, (d) 0.85–1.51, and (e) greater than
1.51, corresponding to the five Ecological Status levels used in the WTD: High, Good, Moder-
ate, Poor, Bad.

All the variables used are presented in Table 1 and the distribution of sampling stations
among Ecological Status categories in EI, Chl-a, BQI-Family and BENTIX are shown in
Table 2.

Table 1. List of variables used in the present study. Chl-a, chlorophyll a; EI, Eutrophic Index; DO, dissolved oxygen; TOC, total organic carbon; Eh, redox
potential; S, number of species; ES(10), expected number of species for 10 individuals; BQI, Benthic Quality Index; BQI-Family, Benthic Quality Index–Fam-
ily; H’, Shannon Diversity Index; BENTIX, Benthic Index; M-AMBI, Multivariate AZTI Marine Biotic Index.

Abiotic variables Biotic variables

Seawater Column Sediment Diversity Biotic indices

Chl-a TOC S BQI

PO4
3– Eh ES(10) BQI-Family

NO3
– % Silt & Clay H’

NO2
– Depth BENTIX

NH4
+ M-AMBI

EI

DO

doi:10.1371/journal.pone.0141071.t001
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Borja et al. [33] suggested that there is a need to set correct reference conditions common
for all the indicators used in the WFD context for the sound assessment of Ecological Status.
Out of all indices used in the present study, the BQI-Family and BENTIX have been calibrated
using stations and reference conditions from the Eastern Mediterranean. The BQI-Family had,
in general, better correlations to environmental variables than BENTIX. Consequently, in anal-
ysis requiring Ecological Status classification, stations were labeled according to the Ecological
Status of the BQI-Family index. Benthic species were categorized according to their ES500.05
values using the species tolerance list provided by Dimitriou et al. [28] into three categories:
opportunistic (ES500.05 1–10), intermediate (ES500.05 10–20), and sensitive (ES500.05 20–30).

Statistical Analyses
For all the analyses, species abundance data were square root transformed. Analysis of similar-
ity (ANOSIM) was performed to detect differences in the benthic community structure
between the different Ecological Status categories of the seawater column, as indicated by EI or
Chl-a scale. When necessary, Analysis of Variance (ANOVA) or Spearman Correlation was
performed using the SPSS 21 program. Furthermore, two ordination techniques were per-
formed: (i) Nonmetric Multidimensional scaling (MDS) with the Bray-Curtis similarity index,
using Primer 6.1, to analyze variations in community composition in relation to the trophic
status of the seawater column and with the Ecological Status, as calculated by the application of
the BQI-Family index; and (ii) Canonical Correspondence Analysis (CCA), using CANOCO
4.5 for Windows [66] to assess the effect of environmental variables on benthic community
structure. The CCA method was selected based on the length of the gradient calculated by
detrended correspondence analysis (DCA)[67]. Since the first DCA axis had a gradient length
equal to 6.387 standard-deviation units, the use of a unimodal ordination technique was justi-
fied. Prior to the CCA analysis, each environmental variable was tested using the variance infla-
tion factor (VIF) to identify useless constraints. A VIF value over 10 indicates that the variable
is highly correlated with the other variables and therefore needs to be excluded from the analy-
sis. In a CCA plot, the arrows for environmental variables point in the general direction of
maximum environmental change across the diagram, and their lengths are approximately pro-
portional to the rate of change in that direction[67]. The projection of a variable on the envi-
ronmental vector is an approximation of the “optima” regarding that particular environmental
variable [67]. The relationship between two variables can be examined based on the angle
between their two arrows; an angle smaller than 90° indicates a positive relation between the
two variables; the smaller the angle, the closer the positive relation of the two variables. An
angle between 90° and 180° suggests a negative correlation. Finally, there is no relation between
two variables when their angle is 90° [67].

To test the effect of seawater column eutrophication on the relative abundance of macro-
benthic opportunistic species (defined as those having ES500.05 < 10), the percentage of

Table 2. Number of sampling stations in each Ecological Status category according to four seawater column and benthic indices. Chl-a, chlorophyll
a; EI, Eutrophic Index; BQI-Family, Benthic Quality Index—Family; BENTIX, Benthic Index.

EI Chl-a BQI-Family BENTIX

Bad 15 20 15 0

Poor 17 27 17 18

Moderate 40 26 19 28

Good 54 41 76 55

High 0 12 0 25

doi:10.1371/journal.pone.0141071.t002
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benthic opportunistic species in each station was calculated. Stations, were subsequently
grouped according to the Ecological Status of the seawater column as indicated by the Chl-a
scale or the EI index, and the average percentage of benthic opportunistic species for each Eco-
logical Status level was plotted.

To further explore the relationship between benthic and seawater column indices we divided
the data set into “acceptable” (“High” and “Good”) and “unacceptable” (“Bad” to “Moderate”)
in terms of benthic indicators. For each of these two groups we carried out a Spearman correla-
tion between values of the seawater column (EI or Chl-a) and benthic (BENTIX and
BQI-Family) indices.

Results
The ANOSIM test showed statistically significant differences in the benthic macrofaunal com-
munity composition between all possible pairs of Eutrophic Index–Ecological Status and in
most cases of Chl-a–Ecological Status of the seawater column in the respective sampling sta-
tions (Table 3). The MDS plot (Fig 1) was based on macrobenthic species-abundance data, but
the stations were classified into groups according to the Ecological Status of the seawater col-
umn, as indicated by the EI index. Sampling stations with “Poor” or “Bad” Ecological Status
under the EI are grouped together in the upper left corner of the MDS plot, whereas those of
“Moderate” or “Good” Ecological Status are scattered in the rest of the plot.

The average percentage of benthic opportunistic species for every EI or Chl-a group is pre-
sented in (Fig 2). The percentage significantly differed (ANOVA p< 0.05) among stations
with “Bad”, “Poor” and “Moderate” Ecological Status for both Chl-a and EI whereas in the case
of EI there was also a significant difference between “Moderate” and “Good” Ecological Status.
At the threshold value separating the seawater column “Moderate” from “Poor” Ecological Sta-
tus, a shift in the percentage of benthic opportunistic species occurs, with values ranging
between 21 and 61% for the Chl-a scale and between 20 and 83% for EI, reaching almost 100%
at the “Bad” Ecological Status.

The effect of all variables taken into account in the CCA was statistically significant
(p< 0.002); however, NO2

– had a VIF> 10 and therefore was excluded from the analysis; this
was also the case for Eh, which had many missing values. The results of the CCA (Table 4)
showed that Axis 1 accounts for 0.857 variance and Axis 2 for 0.51. The correlations between
the species abundance values and those of the environmental variables were high (0.968 and
0.944 for the two axes). Furthermore, the first two axes explained 26.2% of the total species var-
iance and 63.8% of the species environmental variance, which is a sufficiently high percentage

Table 3. Results of ANOSIM test of the benthic community data. Stations were grouped after the status of the seawater column based on the Eutrophic
Index and Chl-a.

Eutrophic Index Chl-a

Bad Poor Moderate Bad Poor Moderate Good

Poor * - Poor ** -

Moderate ** ** - Moderate ** ns -

Good ** ** ** Good ** ** ns -

High ** ns ** ns

**: p < 0.01,

*: p < 0.05,

ns = non significant.

doi:10.1371/journal.pone.0141071.t003
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Fig 1. Non-metric multi dimensional scaling (nMDS) plot of macrobenthic data but with stations labeled after the Ecological Status defined by
means of the Eutrophic Index in the overlaying water column.

doi:10.1371/journal.pone.0141071.g001

Fig 2. Average percentage (± SD) of benthic opportunistic species (ES500.05 < 10) in each Ecological Status of the water column as indicated by
the Chl-a scale or the Eutrophic Index. Statistically significant differences between groups (p < 0.05) in the post hoc Tukey tests for each ANOVA test are
indicated by differences within the following groups of letters: Chl-a (a–c) and EI (a’–d’).

doi:10.1371/journal.pone.0141071.g002
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for a data set of this size [67]. Finally, the results of the Monte-Carlo permutation test (using
the default 499 permutations) showed that the analysis was statistically significant.

In the CCA biplot (Fig 3) depicting the benthic species and environmental variables, species
were separated into three categories; i.e. opportunistic, intermediate and sensitive. The position
of Chl-a, PO4

3–, NO3
– and NH4

+ arrows indicate a strong positive correlation between those
variables. The higher the values, the more the opportunistic species occur. The DO

Table 4. Canonical Correspondence Analysis results.

Axes 1 2 3 4 Total inertia

Eigenvalues 0.857 0.51 0.388 0.272 8.459

Species-environment correlations 0.968 0.944 0.933 0.91

Cumulative % of explained variance

of species data 10.1 26.2 30.7 34

of species-environment relation 33.7 63.8 79.1 89.8

Sum of all eigenvalues 8.459

Sum of all canonical eigenvalues 2.541

Monte-Carlo permutation test Eigenvalue F-ratio P-value

Test of significance of first canonical axis 0.857 4.285 0.002

Test of significance of all canonical axes 2.541 2.33 0.002

doi:10.1371/journal.pone.0141071.t004

Fig 3. Canonical Correspondence Analysis (CCA) biplot with species and environmental values.
Triangle represents species with ES500.05 of 1–10, circle 10–20, square 20–30. Dark and gray arrows
represent sediment and water column variables.

doi:10.1371/journal.pone.0141071.g003
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concentration also plays a major role, as indicated by the length of its arrow, but it is not closely
associated with a group of species. For the sediment variables, TOC is associated with species
of intermediate ES500.05 values, Depth is not associated with any of the species group and %
Silt & Clay plays a less important role compared to the other variables in the present data set.

The results of Spearman's correlation coefficient calculated between the geochemical and
biological variables and indices (Table 5) showed highly significant correlation between Chl-a
and almost all benthic variables (p< 0.01), positive in the case of silt content of the sediment
and negative with all the indices related to diversity or ecological quality. The EI (highly corre-
lated with Chl-a) showed the same correlation pattern with Chl-a and stronger correlations
with most benthic indices. The DO in the seawater above the seabed was positively correlated
with Chl-a and EI. On the other hand, the Eh was negatively correlated to the Chl-a and EI and
also with the biotic indices.

The MDS plot in Fig 4 was based on macrobenthic species-abundance data (as in Fig 1), but
the stations here were labeled after the Ecological Status of the BQI-Family index. Sampling
stations with “Poor” or “Bad” Ecological Status under the BQI-Family are grouped together in
the upper left corner of the MDS plot, whereas those of “Moderate” or “Good” Ecological Sta-
tus are scattered in the remaining plot space. There is a remarkable similarity between the two
figures (Figs 1 and 4) regarding the distribution of the ecological quality status.

When separating the samples into “acceptable” and “unacceptable” in terms of the benthic
indices (Table 6) there is a strong correlation in the “unacceptable” stations (p< 0.001)
between all four combinations of Chl-a, EI and BENTIX, BQI-Family, whereas in the “accept-
able” stations the correlations were weaker (p< 0.05) and were significant only between Chl-
a–BENTIX and EI–BQI-Family.

Table 5. Spearman rank correlation between biological and geochemical variables and/or indices. Chl-a, chlorophyll a; EI, Eutrophic Index; DO, dis-
solved oxygen; TOC, total organic carbon; Eh, redox potential; S, number of species; ES(10), expected number of species for 10 individuals; BQI, Benthic
Quality Index; BQI-Family, Benthic Quality Index–Family; H’, Shannon Diversity Index; BENTIX, Benthic Index; M-AMBI, Multivariate AZTI Marine Biotic
Index.

Chl-a NH4
+ PO4

3– NO3
– NO2

– EI DO TOC Eh % Silt & Clay

PO4
3– ns ns

NO3
– ns 0.33** 0.24**

NO2
– ns 0.24** 0.33** 0.61**

EI 0.73** 0.54** 0.29** 0.50** 0.55**

DO 0.67** 0.35** -0.52** 0.29* -0.19 0.36**

TOC ns ns ns ns ns ns ns

Eh -0.68** -0.58** ns ns ns -0.61** ns -0.66**

% Silt & Clay 0.39** 0.31** 0.41** ns 0.35** 0.37** ns 0.55** -0.66**

BQI -0.49** -0.40** -0.18* -0.18* -0.29* -0.63** -0.46** -0.24* 0.70** -0,27*

BQI-Family -0.60** -0.40** ns -0.14* -0.24* -0.65** -0.46** -0.25* 0.67** -0,28*

H’ -0.57** -0.40** ns ns ns -0.54** -0.40** -0.12* 0.73** ns

BENTIX -0.34** ns ns ns ns -0.33** ns -0.20* 0.38** ns

M-AMBI -0.58** -0.38** -0.26** -0.20** -0.33** -0.67** -0.48** -0.15* 0.69** -0,31**

S -0.34** -0.45** -0.35** -0.23** -0.37** -0.61** -0.28* ns 0.66** -0,41**

ES(10) -0.54** -0.42** ns -0.12* -0.30** -0.63** -0.44** -0.36** 0.75** -0,36**

Depth -0.60** -0.38** 0.29** ns ns -0.37** -0.74** ns 0.64** ns

* p < 0.05,

** p < 0.001,

ns = non significant,

doi:10.1371/journal.pone.0141071.t005
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From the second CCA biplot with stations and environmental variables, it can be concluded
that stations classified as “Bad” Ecological Status are closely related to Chl-a and nutrients,
while those with “Poor” and “Moderate” Ecological Status are more related to DO and Depth.
Stations with “Good” Ecological Status are closely related to TOC content (Fig 5).

Discussion
The results of the present study demonstrate that there is a remarkably tight link between the
trophic status of the seawater column and the benthic macrofaunal community composition.
Although the coastal environment is considered to be relatively unstable in terms of the seawa-
ter column variables, particularly in exposed marine sites [68], the analysis showed that
changes in the seawater column environmental variables are readily (and quantitatively)

Fig 4. Non-metric multi dimensional scaling (nMDS) plot of macrobenthic data with stations labeled after the Ecological Status defined bymeans
of the Benthic Quality Index—Family index. The ellipse surrounds the stations with “Bad” or “Poor” Ecological Status in the water column as indicated in
Fig 1.

doi:10.1371/journal.pone.0141071.g004

Table 6. Results of Spearman correlation analysis between water column and benthic indices for two groups of stations based on the Ecological
Status of the benthic indicators, i.e. “acceptable” (“High” or “Good”) and “unacceptable” (“Bad”, “Poor” or “Moderate”). Chl-a, chlorophyll a; EI,
Eutrophic Index; BQI-Family, Benthic Quality Index–Family; BENTIX, Benthic Index.

Chl-a EI

BENTIX BQI-Family BENTIX BQI-Family

Acceptable -0.26* ns ns -0.31*

Unacceptable -0.55** -0.68** -0.50** -0.84**

* p < 0.05,

** p < 0.001,

ns = non significant,

doi:10.1371/journal.pone.0141071.t006
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reflected by the underlying benthic communities. The categorization of the benthic samples
according to the EI seemed more efficient than that based on the Chl-a concentration. How-
ever, it should be noted that there is not always consensus among experts regarding the classifi-
cation of samples between consecutive ecological quality categories [69] as no single class of
indicators consistently outperforms all other classes of indicators [70]. The change in commu-
nity structure induced by changes in the seawater column trophic status is related to the
increase in the proportion of opportunistic benthic species. Such increase was found when
crossing the threshold between “Moderate” and “Poor” Ecological Status in the seawater col-
umn but less conspicuously (although significant in the case of EI) when crossing the threshold
between “Moderate” and “Good”. Here, the opportunistic species are defined as those with
ES500.05 < 10 (index introduced by Rosenberg et al. [24]), i.e. those species which are able to
tolerate adverse environmental conditions resulting in low benthic diversity according to the
benthic succession paradigm [42].

The CCA results suggest that a set of environmental gradients affects the distribution of spe-
cies with different strategies. The most significant variables are Chl-a and nutrients, DO,
Depth and TOC. The abundance of opportunistic species is closely related to the Chl-a and
nutrients whereas the intermediate and sensitive ones are associated with a combination of
DO, Depth and TOC in sediments.

Fig 5. Canonical Correspondence Analysis biplot with stations and environmental variables. Stations are labeled after the Ecological Status defined
by means of the Benthic Quality Index—Family index: Symbols indicate Ecological Status: triangle, Bad; circle, Poor; square, Moderate; diamond, Good.

doi:10.1371/journal.pone.0141071.g005
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Both Chl-a and EI were highly correlated with benthic indices and geochemical variables.
The Spearman correlation coefficients of Chl-a and EI were similar in the case of Eh, BENTIX,
Shannon (although it has been argued [71] that the Shannon index sometimes is unable to
explain a significant amount of variability) and % Silt & Clay but EI showed much stronger
correlations in the case of BQI, M-AMBI, BQI-Family, S and ES(10). On the other hand, Chl-a
showed stronger correlation with DO (positive) and Depth (negative). According to the CSTT
[51] study, a seawater column with a Chl-a concentration value of 10 μg L-1 during the summer
months could cause undesirable effects. In addition, Simboura et al. [16] suggested that Chl-a
concentrations above 2.2 μg L-1 indicate “Bad” Ecological Status. According to the Commission
Decision of 2013 [72], WFD 'high/good' thresholds for the upper 90 percentile of growing sea-
son chlorophyll in the North-East Atlantic range from 10 μg L-1 in the North Sea (type NEA1/
26b) to 1.5 μg L-1 in the Spanish NEA1/26a type. The values are highly regionally specific. In
the present study, Chl-a concentration values up to 10 μg L-1 have not induced even hypoxia in
the oligotrophic marine environment of the Eastern Mediterranean. On the contrary, the DO
concentrations had rather increased in the samples taken into account, probably due to high
O2 release from photosynthesis. In fact, the correlation of Chl-a (and EI) with DO was positive
(p< 0.01). It should be noted that all the samples were taken from a generally oligotrophic
area receiving variable nutrient concentrations. Therefore, there was significant variation in the
trophic state of the seawater column (in terms of Chl-a or EI) but no hypoxia was detected
(89% of the sampling stations with DO> 6.5 μg L-1) in the seawater column including the ben-
thic boundary layer. However, the precipitating organic material may have induced severe
changes in the redox regime of the underlying sediments (33% of the stations had Eh< 0 mV)
and consequently significant changes in the structure of the benthic communities. The results
of the present study showed that, in the given reference framework, the variables describing the
trophic status of the seawater column are more important in determining macrofaunal compo-
sition than seawater depth or sediment properties, as found in previous studies [54, 73, 74].
This may be partly because when the stations were selected, extreme conditions caused by local
disturbances such as discharge of organic material [55] and trawling fisheries [56], which are
known to deteriorate the Ecological Status but are not related to the sedimentation of phyto-
plankton biomass, were avoided.

The correlation between seawater column variables and benthic indices is useful as it can
provide thresholds for Ecological Status assessment in the context of the WFD. Benthic indices
are known to be significantly correlated [28, 34, 36, 37, 40] and, in addition, it has been shown
by Karakassis et al. [40] that there is little change in their values when sampling methodologies
(sieve mesh size, sampler size and sampling season) vary. Setting reference conditions for
assessing ecological status is a major challenge in aquatic management [33]. The patchiness of
the seabed characteristics, pressures and effects on many scales makes difficult any generaliza-
tion of the use of indicators and their reference levels [70]). In addition, not all indicators have
equally high discriminatory power or robustness to assess changes across areas with different
habitats and disturbance regimes. However, it is worth mentioning that despite these short-
comings expert judgment is likely to result in very similar conclusions among experts from dif-
ferent geographic areas and with experience in different habitat and disturbance types [69].

The issue of Good Environmental Status has been discussed in several papers (e.g., [33, 75,
76]). The MSFD presents major challenges and opportunities for the practical use of indicators
and their underlying scientific information content in supporting a balance of sustainable use
of marine ecosystems for sustainability and economic prosperity [75]. The results of the pres-
ent study indicate that there is a threshold in which a regime shift in the benthic community
occurs as the strong coupling between “Bad” and “Poor” Ecological Status on both benthos and
seawater column, implies that eutrophication may well be the driving force that changes the
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structure of benthic communities (Figs 4 and 5). In Fig 5, all stations with those two Ecological
Status categories in benthos are located within the ellipse surrounding “Bad” or “Poor” of the
seawater column. Additionally, Fig 4 indicates that samples with “Bad” and “Poor” (in most
cases) are closely related with eutrophication variables. It appears that this is a threshold point
after which the benthic system loses its resilience. Tett et al. [77] argue that according to the
systemic approach, the persistence of an open system depends on the maintenance of its func-
tional integrity whilst processing throughputs of energy and materials. These authors suggest
that resilience is the ability to maintain integrity despite changes in boundary conditions. Addi-
tionally, Rice et al. [75] argued that communities with Good Environmental Status are those
with a few abundant species and many rare ones. Such communities show a high resilience
potential in the face of moderate pressures because biodiversity buffers ecosystem processes
and, through these processes, the ecosystem services can be used sustainably (the complemen-
tarity hypothesis) [78]. Taking into account those arguments, strong coupling between seawa-
ter column and benthic variables in “Bad” and “Poor” environmental conditions is expected;
while in “Moderate” and “Good”, other parameters such as TOC or sediment type are likely to
define the structure of the benthic community.

Although threshold values are likely to be regionally valid, and seawater-body-type, specific,
there is a clear need for work relating an increase of the seawater column chlorophyll concen-
trations to the benthic impact. The results of the present study indicate that there is a strong
quantitative link between the seawater column variables and the indices describing the benthic
diversity and community composition. In the context of environmental monitoring, this corre-
lation seems to be promising in defining “high risk areas” where more intense sampling is
needed, based on an initial screening of large marine areas by means of quick analysis of seawa-
ter samples. Although the results did not reveal a threshold for a “safe” ecological status for EI
or Chl-a that could be used as an indubitable Environmental Quality Standard, it seems that
the EI threshold level of 0.85, separating “Bad and Poor” from “Moderate to High” conditions
[2], could serve as an acceptable critical value, above which there is a readily observable regime
shift leading to a deterioration in benthic community composition.
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